Lead scientist / contact

Laura Grima

Abstract

In natural environments, animals must efficiently allocate their choices across multiple concurrently available resources when foraging, a complex decision-making process not fully captured by existing models. To understand how rodents learn to navigate this challenge we developed a novel paradigm in which untrained, water-restricted mice were free to sample from six options rewarded at a range of deterministic intervals and positioned around the walls of a large (~2m) arena. Mice exhibited rapid learning, matching their choices to integrated reward ratios across six options within the first session. A reinforcement learning model with separate states for staying or leaving an option and a dynamic, global learning rate was able to accurately reproduce mouse learning and decision-making. Fiber photometry recordings revealed that dopamine in the nucleus accumbens core (NAcC), but not dorsomedial striatum (DMS), more closely reflected the global learning rate than local error-based updating. Altogether, our results provide insight into the neural substrate of a learning algorithm that allows mice to rapidly exploit multiple options when foraging in large spatial environments.

Preprint

A global dopaminergic learning rate enables adaptive foraging across many options

Associated code

https://github.com/lauralgrima/FoMO_code

Hardware

Screenshot 2024-11-04 at 2.53.14 PM.png

Example foraging video snippet

Grima-M12-Example.m4v